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PREAMBLE 

 The theory which is outlined in this 

lecture, call it RRC for short, is a 

departure from traditional approaches to 

reasoning and computation. A principal 

advance is an enhanced capability for 

reasoning and computation in an 

environment of uncertainty, imprecision 

and partiality of truth. In large measure, 

RRC is motivated by the fact that in the 

real world such environment is the norm 

rather than exception. 
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THE CONCEPT OF A RESTRICTION 

 A concept which has a position of centrality 

in RRC is that of a restriction. Informally, a 

restriction is an answer to the question: 

What is the value of a variable, X? Simple 

example. I ask: How long will it take me to 

drive from Berkeley to SF airport? 

Answers/restrictions: 

a. 1hr and 15min  (arithmetic) 

b. 1hr and 15min +/- 15min  (interval 

arithmetic) 

c. About 1hr and 15min (RRC) 

d. Usually about 1hr and 15min      (RRC) 
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CONTINUED 

 A restriction is a carrier of information 

about X—information which can 

assume a variety of forms. 

 More concretely, a restriction, R(X), on 

a variable, X, is a limitation on the 

values which X can take—a limitation 

which is induced by what is known or 

perceived about X. A restriction is 

singular if the answer to the question is 

a singleton; otherwise it is nonsingular. 

Generally,  
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PRECISIATED AND UNPRECISIATED 

RESTRICTIONS 

nonsingularity implies uncertainty. A 

restriction is precisiated if the 

limitation is mathematically well 

defined; otherwise it is unprecisiated. 

Generally, restrictions which are 

described in a natural language are 

unprecisiated. To serve as an object of 

computation, an unprecisiated 

restriction must be precisiated. A 

restriction is precisiable if it lends itself 

to precisiation. LAZ 8/1/2012 7/77 



EXAMPLES OF RESTRICTIONS 

 Restrictions range from very simple to very 

complex. Examples. 
 

    2≤X≤6      (possibilistic) 
 

X is normally distributed with mean m and 

variants σ2   (probabilistic) 

 

    X is small      (possibilistic) 

 Usually X is small 

(possibilistic/probabilistic) 

 It is very unlikely that there will be a 

significant increase in the price of oil in the 

near future (possibilistic/probabilistic) 
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MORE ON RESTRICTIONS 

 The concept of a restriction is significantly 

more general than the concept of a 

predicate. In everyday discourse, restrictions 

are described, for the most part, in natural 

language. Perceptions are restrictions.  

 Restrictions play an essential role in human 

reasoning and cognition. 

 A natural language may be viewed as a 

system of restrictions. 

 To a significant degree, scientific progress is 

driven by a quest for precisiation of 

perceptions. 
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REPRESENTATION AND COMPUTATION 

 There are two basic issues. First, how 

can a semantic entity, e.g., a predicate 

or a proposition, be represented as a 

precisiated restriction? Simple 

example. How can the proposition, p: 

Most Swedes are tall, be represented as 

a precisiated restriction?  

 Second, how can restrictions be 

computed with? An initial treatment of 

this issue is contained in Zadeh, 1975b. 
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EXAMPLE: ADDITION OF RESTRICTIONS 

 Usually Robert leaves his office at 

about 5pm.  

 Usually it takes Robert about an hour to 

get home from work. 

 Question: At what time does Robert get 

home? 

 (about 5pm, usually) + (about 1hr, 

usually)=? 

 To answer this question what is needed 

is the machinery of RRC. 
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COMPUTATION WITH RESTRICTIONS 

 Over the past years, decades and 

centuries, an enormous resource, call it 

R, of mathematical constructs, 

methods and theories has been 

amassed. The resource, R, has a far-

reaching problem-saving capability. 

But this far-reaching capability falls 

short of being effective in reasoning 

and computation with restrictions 

described in a natural language. There 

is a basic reason.  
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PROBLEMS WITH BIVALENT LOGIC 

 In large measure, R is based on the 

classical, Aristotelian, bivalent logic. 

Bivalent logic is intolerant of 

imprecision and partiality of truth. 

Basically, a natural language is a 

system for describing perceptions. 

Perceptions are intrinsically imprecise, 

reflecting the bounded ability of human 

sensory organs and ultimately the 

brain, to resolve detail and store 

information. Imprecision of perceptions 

is passed on to natural languages.  
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FUZZY LOGIC 

 Imprecision of natural languages is in 

conflict with precision of bivalent logic. 

For this reason, bivalent logic is not the 

right logic for dealing with natural 

languages. What is needed for this 

purpose is fuzzy logic, FL. 

 Informally, FL is a system of reasoning 

and computation in which the objects 

of reasoning and computation are 

classes with unsharp (fuzzy) 

boundaries.  
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THE CONCEPT OF A FUZZY SET 

 A concept which has a position of 

centrality in fuzzy logic is that of a 

fuzzy set. A fuzzy set, A, in a 

space, U, is a precisiated class, B, 

which has unsharp (fuzzy) 

boundaries. Precisiation involves 

graduation, that is, association of 

B with a membership function—a 

function which assigns to each 

element, u, of U its grade of 

membership in A, µA(u).  LAZ 8/1/2012 15/77 



GRADUATION OF PERCEPTIONS 

 Humans have a remarkable capability 

to coarsely graduate their subjective 

perceptions. Humans have no difficulty 

in answering questions exemplified by: 

On the scale from 0 to 10, how honest 

is Robert? On the scale from 0 to 10, 

how does age 45 fit your perception of 

middle-age? Other examples: medical 

questionnaires; grading of term papers.  

 This remarkable capability underlies 

the conceptual structure of fuzzy logic. 
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FUZZY LOGIC—EVERYTHING IS A MATTER 

OF DEGREE 
 In fuzzy logic everything is, or is 

allowed to be, a matter of degree, 

with the understanding that 

degrees can be fuzzy sets.  

 A simple illustration is the 

following. Consider the 

proposition, p: Vera is middle-

aged, in which middle-aged—a 

perception of Vera’s age—is a 

class with unsharp boundaries.  
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PRECISIATION OF MIDDLE-AGED 

 A simple perception, e.g., middle-aged, 

may be precisiated as a fuzzy set. For 

simplicity, the membership function of 

this fuzzy set may be assumed to be 

trapezoidal. 

      

40 60 45 55 

μ 

1 

0 

definitely 

middle-age 

definitely not middle-age definitely not middle-age 
43 

0.8 

core of middle-age 

membership function of  

middle age 
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FL-GENERALIZATION 

 Fuzzy logic provides a basis for 

what is referred to as FL-

generalization. Let T be a bivalent-

logic-based theory. FL-

generalization of T involves 

introduction into T of the concept 

of a fuzzy set, followed by adding 

to T other concepts and 

techniques drawn from fuzzy logic, 

and using them to generalize T.  
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FUZZY T 

 The resulting theory is labeled 

fuzzy T. Well known examples of 

FL-generalization are fuzzy control, 

fuzzy linear programming, fuzzy 

arithmetic, fuzzy set theory, and 

fuzzy topology. By now, a number 

of bivalent logic-based theories 

have been FL-generalized to some 

degree. In coming years, more and 

more bivalent-logic-based theories 

are likely to be FL-generalized. LAZ 8/1/2012 20/77 



MORE ON FL-GENERALIZATION 

 FL-generalization applies not only to 

theories but, more generally, to 

algorithms, formalisms and concepts. 

 Examples. Fuzzy back-propagation 

algorithm. Fuzzy Markoff algorithm. 

Fuzzy stability. Fuzzy preference 

relation. 

 FL-generalization opens the door to 

construction of better models of reality.  
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FL-GENERALIZATION IS NEEDED TO 

CONSTRUCT BETTER MODELS OF REALITY 

 In science, it is a deep-seated tradition 

to employ bivalent logic for definitions 

of concepts.  

 Example. Standard definition of 

recession is: Decline in GDP for two 

successive quarters.  

In reality, recession is a matter of 

degree. Standard definition is patently 

off based.  

 Another example: Grammaticality 
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RESOURCE, R, AND ENLARGED RESOURCE, 

R+ 

 FL-generalized formalisms and 

theories may be added to resource, 

R. The result is an augmented 

resource, R+. By construction, R+ 

has greater generality than R. 

R 
FL-generalization 

R+ 
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PRINCIPAL MODES OF REASONING 

 There are three principal modes of 

reasoning and computation in RRC. 

 Type 1 reasoning and computation is 

R-based. The objects of reasoning and 

computation are, basically, 

measurements. The underlying logic is 

the classical, bivalent logic. 

 Type 2 reasoning and computation is 

R+-based. The objects of reasoning and 

computation are, basically, 

measurements and precisiated 

perceptions. LAZ 8/1/2012 24/77 



TYPE 3 REASONING 

 Type 3 reasoning is the most common 

form of human reasoning. Almost all of 

human reasoning in the realms of 

everyday reasoning, political reasoning 

and legal reasoning is of Type 3. 

 

 In Type 3 reasoning the objects of 

reasoning are unprecisiated 

perceptions. 

 

 Type 3 reasoning is non-mathematical. 
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STRUCTURE OF MODES OF REASONING 

AND COMPUTATION 

Modes of Reasoning and Computation 

mathematical non-mathematical 

Type 1 Type 2 Type 3 

measurements measurements 

+ 

precisiated 

perceptions 

unprecisiated 

perceptions 

f-validity p-validity 
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ILLUSTRATION. THE TAXI CAB PROBLEM 

 I hail a taxi and ask the driver to take me 

to address A. There are two versions: 

(a) I ask the driver to take me to A the 

shortest way; and (b) I ask the driver to 

take me to A the fastest way. Based on 

Type 3 reasoning, the driver chooses 

route a for (a) and route b for (b).  

 Assuming that we have a street map, 

version (a) lends itself to Type 1 

reasoning and computation. Version (a) 

is tractable. LAZ 8/1/2012 27/77 



CONTINUED 

 Realistic models of version (b) do 

not lend themselves to Type 1 or 

Type 2 reasoning, except as an 

approximation.  

 Note. Version (b) lends itself to 

Type 1 reasoning retrospectively, 

that is, assuming that traffic 

history is recorded.   

 In version (b), there is a conflict 

between reality and tractability.  
 LAZ 8/1/2012 28/77 



CONCLUDING REMARK 

The concept of a restriction 

is the centerpiece of RRC. A 

more detailed discussion of 

the concept of a restriction 

is presented in the following 

section. 
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REPRESENTATION OF A RESTRICTION 

 The concept of a restriction is closely 

related to the concept of a generalized 

constraint (Zadeh 2006) 
 

 The canonical form of a restriction on 

X, R(X), may be represented as: 

    R(X):    X isr R, 

 where X is the restricted variable, R is 

the restricting relation and r is an 

indexical variable which defines how R 

restricts X. 
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HARD AND SOFT RESTRICTIONS 

 A restriction, R(X), is hard if it is of 

the form 

   R(X): X ε A, 

where A is a set. A constraint is a   

hard restriction.  
 

 A restriction is soft if it is not hard. 
 

 In RRC, a probabilistic restriction 

is viewed as a soft restriction. 
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DIRECT AND INDIRECT RESTRICTIONS 

A restriction on X is direct if it is 

of the form: 

    R(X):   X isr R 

A restriction on X is indirect if it 

is of the form:  

    R(X):   f(X) isr R, 

 where f is a specified function or 

functional. 
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EXAMPLE OF INDIRECT RESTRICTION 

 is an indirect restriction on p. 

 

 Note: The term “restriction” is 

sometimes applied to R. 
 

 Note: Unless stated to the contrary, X is 

assumed to be real-valued.  
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PRECISIATED AND UNPRECISIATED 

RESTRICTIONS 

 A restriction, X isr R, is precisiated if X, 

R and r are mathematically well-

defined. In particular, if R is a fuzzy set, 

the restriction is precisiated if the 

membership function of R is specified. 

 The restriction is unprecisiated if it is 

not precisiated. The perceptual 

meaning, or simply the meaning, of an 

unprecisiated restriction is the 

perception which it evokes in one’s 

mind. LAZ 8/1/2012 35/77 



UNPRECISIATED 

RESTRICTIONS/PERCEPTIONS 

 Example. If I am told that Vera is 

middle-aged, without specifying the 

membership function of middle-

aged, my perception of Vera’s age is 

an unprecisiated restriction/ 

perception. Unprecisiated 

restrictions/perceptions—described 

in a natural language—are dominant 

in human discourse and everyday 

reasoning. 
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CONDITIONAL RESTRICTIONS 

 A conditional restriction is a restriction 

which is conditioned on another 

restriction. A conditional restriction is 

represented as: 
 

  If X isr R then Y iss S 
 

 Example.  

 If pressure is high then volume is 

low. 

A fuzzy if-then rule is a conditional 

restriction. LAZ 8/1/2012 37/77 



PRINCIPAL KINDS OF RESTRICTIONS 

 The principal restrictions are 

possibilistic, probabilistic and 

combinations of possibilistic and 

probabilistic restrictions.  

 In the context of natural languages, 

restrictions are preponderantly 

possibilistic. This is why in the 

case of possibilistic restrictions 

the value of the indexical variable, 

r, is simply blank.  
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POSSIBILISTIC RESTRICTION 

 Possibilistic restriction (r=blank): 
 

    R(X):   X is A, 
 

  where A is a fuzzy set in U with the 

membership function µA. A plays 

the role of the possibility 

distribution of X 
 

    Poss(X=u)= µA(u) 
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EXAMPLES 

      X is small 
   

  restricted   restricting 

  variable  relation (fuzzy set) 

 small is the possibility distribution of X 
 

    Robert is older than Ann 

      (Age(Robert), Age(Ann)) is older 
   

  restricted     restricting 

  variable    relation  

          (fuzzy relation) 
 

The fuzzy relation “older” is the possibility distribution 

of ((Age(Robert), Age(Ann)) 
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PROBABILISTIC RESTRICTION 

Probabilistic restriction (r=p): 
 

   R(X):   X isp P, 
 

  where P plays the role of the 

probability distribution of X 
  

   Prob(uXu+du)=p(u)du, 
 

 where p is the probability density 

function of X. 
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EXAMPLE 

 X is a random variable taking 

values in a finite set (u1, …, un) with 

respective probabilities p1, …, pn. 
 

In this case, 
 

 X isp (p1\u1+…+pn\un), 
 

in which pi\ui means that pi is the 

probability of ui, i=1, …, n. 
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EXAMPLE 

restricted 

variable 

restricting relation 

(probability density function) 
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Z-RESTRICTION 

 X is a real-valued random variable. 

 Z-restriction (r=z, s is suppressed) 

is expressed as 
 

    R(X):   X iz Z, 
 

  where Z is a combination of 

possibilistic and probabilistic 

restrictions defined as  
 

   Z: Prob(X is A) is B, 
LAZ 8/1/2012 44/77 



THE CONCEPT OF A Z-NUMBER 

in which A and B are fuzzy sets. 

Usually, A and B are labels drawn 

from a natural language. The 

ordered pair, (A,B), is referred to 

as a Z-number (Zadeh, 2011) 

 

 The fuzzy number, B, is a 

possibilistic restriction on the 

certainty (probability) that X is A.  
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EXAMPLES 

Usually temperature is low 

 Temperature iz (low, usually) 
 

Probably John is tall 

Height(John) iz (tall, probable). 
 

 Important note: 

 Usually X is A, 

 where A is a fuzzy set, is a Z-

restriction LAZ 8/1/2012 46/77 



UNDERLYING PROBABILITY DENSITY 

FUNCTION 

 More concretely, B is a possibilistic 

restriction on the probability of the 

fuzzy event, X is A. Let p be the 

probability density function of X, and 

let µA be the membership function of A. 

The probability of the fuzzy event, X is 

A, may be expressed as (Zadeh, 1968) 
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UNDERLYING PROBABILITY DENSITY 

FUNCTION 

More compactly, Prob(X is A) may be 

written as the scalar product of p and 

µA  

  Prob(X is A)=p·µA, 

 
 

with the understanding that B is an 

indirect possibilistic restriction on p. 

 p is referred to as the underlying 

probability density function of X. 
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Z+-RESTRICTION 

 Z+-restriction (r=z+, s is suppressed) is 

expressed as: 

    R(X):   X iz+ Z+, 

   Z+=(Poss(X), Prob(X)), 

  meaning that Z+ is an ordered pair, 

(Poss(X), Prob(X)), in which Poss(X) 

and Prob(X) are, respectively, the 

possibility and probability 

distributions of X. Note that Z+ is more 

informative than Z.  
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THE CONCEPT OF A Z+-NUMBER 

 More concretely, if Z=(A,B) and p is the 

underlying probability density function 

of X, then 

     Z+=(A, p) 

 Correspondingly, If Z is (A,B) and Z+ is 

(A,p) then B is an indirect possibilistic 

restriction on µA·p 

 p is explicit in Z+ and implicit in Z. 

 The ordered pair (A,p) is referred to as 

a Z+-number. 
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EXAMPLE OF Z+-RESTRICTION 

X is the number of eggs which Hans eats 

for breakfast. 

Poss(X)=1/0+1/1+…+1/6+0.8/7+0.6/8+… 
 

Prob(X)=0.3\0+0.6\1+0.1\3 

 

 Note that the possibility distribution of 

X cannot be derived from the 

probability distribution of X, and vice 

versa.  
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THE CONCEPT OF Z-VALUATION 

 A Z-valuation is an ordered triple of the 

form (X,A,B), where X is a real-valued 

variable and (A,B) is a Z-number. 

Equivalently, a Z-valuation, (X,A,B), is a 

Z-restriction on X, 

     (X,A,B)      X iz (A,B). 

Examples.  

 (age of Robert, young, very likely) 

 (traffic, heavy, usually) 

 A Z-valuation may be viewed as a 

linguistic summary of experience. 
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Z-RULES 
 A Z-rule is a conditional restriction in 

which the antecedent and consequent are 

Z-valuations 

  If(X,A1,B1) then (Y,A2,B2) 

Example.  

 If(temperature, low, usually) then (cost of 

heating, high, usually) 

 

 If(price, high) then (quality, high, usually) 

 Z-rules have the potential for playing an 

important role in representation of 

possibilistic/probabilistic dependencies. 
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Z-INFORMATION 

 In real-world settings, much of the 

information in an environment of 

uncertainty and imprecision may 

be represented as a collection of Z-

valuations and Z-rules—a 

collection which is referred to as Z-

information.  
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EXAMPLES OF Z-INFORMATION 

 Usually Robert leaves his office at 

about 5pm  

(time of departure, about 5pm, 

usually) 

 

 If traffic is heavy, usually travel 

time is about 1.5 hours  

If (traffic, heavy) then (travel time, 

about 1.5 hours, usually) 
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Z-INTERPOLATION—A CHALLENGING 

PROBLEM 

 If X is A1 then Y iz (B1, usually) 

   ··· 

  If X is An then Y iz (Bn, usually) 

 

  X is A. What is Y? 

 

This is a generalized version of the 

problem of interpolation which plays 

a key role in fuzzy control. 
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COMPUTATION WITH Z-INFORMATION 

 Reasoning and computation with 

Z-information plays an important 

role in restriction-centered 

reasoning and computation, RRC. 

A very brief exposition of 

computation in RRC is presented 

in the following Section. More 

detail may be found in the 

Appendix. 
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REPRESENTATION OF INFORMATION AND 

MEANING AS RESTRICTIONS  

 There are two postulates which play 

essential roles in RRC. First, the 

information postulate, IP. Second, the 

meaning postulate, MP.  

 The information postulate, IP, equates 

information to a restriction  

  information=restriction 

What IP implies is that information about 

the value of a variable is conveyed by 

restricting the values which the variable 

can take. LAZ 8/1/2012 59/77 



MEANING POSTULATE 

 This interpretation of information 

is considerably more general than 

the entropy-based definition of 

information in information theory. 

  

 The meaning postulate, MP, 

equates meaning to restriction 
 

  meaning=restriction 
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MORE ON MEANING POSTULATE 

 What MP implies is that the 

meaning of a proposition, p, with p 

viewed as a carrier of information 

about a variable, X, may be 

represented as a restriction on the 

values which X can take. In 

symbols,  
 

   p    X isr R   

 X is explicit or implicit in p. 
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EXAMPLES 

 p: Robert is young      Age(Robert) is young 

               X      R 

 p: Most Swedes are tall 

 Proportion(tall Swedes/Swedes) is most 

        X      R 

 p: Usually it takes Robert about an hour to 

get home from work     Travel time from 

office to home iz (approximately 1 hr, 

usually) 
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PRECISIATION OF MEANING 

 Representation of the meaning of p as a 

restriction is referred to as precisiation of 

meaning of p or, more simply, precisiation of 

p. The same applies to words, phrases, 

questions, commands and other types of 

semantic entities.  

 Informally, the subjective meaning of a 

semantic entity is the perception which it 

evokes in one’s mind.  

 Precisiation of propositions drawn from a 

natural language falls within the province of 

Computing with Words (CWW) (Zadeh, 2012)  
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COMPUTING WITH WORDS (CWW) 

 Precisiation of meaning is a preliminary to 

computation with information described in 

natural language. Computation with 

information described in natural language 

has a position of centrality in Computing 

with Words (CWW). In the following, 

attention will be focused on computation 

with Z-information, and, more particularly, 

computation with Z-numbers. Because of 

limitations on time, our discussion is 

compressed. 
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THE EXTENSION PRINCIPLE 

 A mathematical formalism which plays 

an essential role in computation with 

restrictions is the extension principle 

(Zadeh, 1965, 1975a I II III) A brief 

discussion of the extension principle is 

presented in the following Section. 

LAZ 8/1/2012 65/77 
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THE EXTENSION PRINCIPLE 

 The extension principle is not a single 

principle. The extension principle is a 

collection of computational rules in 

which the objects of computation are 

various types of restrictions. More 

concretely, assume that Y is a function 

of X, Y=f(X), where X may be an n-ary 

variable. Assume that what we have is 

imperfect information about X and/or f, 

implying that what we know are 

restrictions on X and/or f, respectively, 

R(X) and R(f).  
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MORE ON THE EXTENSION PRINCIPLE 

These restrictions induce a restriction on Y, 

R(Y). The extension principle relates to 

computation of R(Y) given R(X) and R(f). 

There are three types of the extension 

principle. In Type 1, we know f and R(f). 

In Type 2, we know X and R(f). In Type 3, we 

know R(X) and R(f). There are different 

versions of each type depending on the 

nature of restrictions. In what follows, 

because of limitations of time, we consider 

only two basic versions of Type 1. Other 

versions are discussed in the Appendix. 
LAZ 8/1/2012 68/77 



TYPES OF THE EXTENSION PRINCIPLE 

Y=f(X) 

R(X) 

? R(Y) 

Y 

X 
R(X) 

R(Y) 

f(X) 

0 

Type 1 

R(Y) 

Y 

X 
X 

R(f) 

0 

Type 2 

R(Y) 

Y 

X 
R(X) 

R(f) 

0 

Type 3 

Y=f(X) 

R(f) 

? R(Y) 

Y=f(X) 

R(X) 

R(f) 

? R(Y) 
 Note. R(f) is usually described as a collection of 

fuzzy if-then rules (Zadeh 1976) LAZ 8/1/2012 69/77 



POSSIBILISTIC EXTENSION PRINCIPLE 

 The simplest version (Zadeh 1965) 

is one in which the restriction is 

possibilistic and direct. This 

version of the extension principle 

is expressed as: 
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CONTINUED 

 Y=f(X) 

R(X): X is A 

subject to 

R(Y)(f(A)): µY(v)=supu(µA(u)) 

v=f(u), 

where µA and µY are the membership 

functions of A and Y, respectively 
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A MORE GENERAL VERSION 

 A slightly more general version 

(Zadeh 1975a) is one in which R(X) 

is possibilistic and indirect. 

 Y=f(X) 

R(X): g(X) is A 

subject to 

R(Y)(f(A)): µY(v)=supu(µA(g(u))) 

v=f(g(u)) 
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A SIMPLE EXAMPLE 

 Given, p: Most Swedes are tall.  

 Question, q: What is the average height of 

Swedes? 

 The first step involves precisiation of p and q. 

For this purpose, it is expedient to employ the 

concept of a height density function, h.  

 h(u)du=proportion of Swedes whose height 

lies in the interval [u, u+du]. If hmin and hmax 

are, respectively, the minimum and maximum 

heights in the population, we have:   
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CONTINUED 

 In terms of the height density function, 

precisiations of q and p may be 

expressed as q* and p*: 

where µtall is the membership function 

of tall. 
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CONTINUED 

 Applying the basic, indirect, possibilistic 

version of the extension principle, 

computation of have is reduced to the 

solution of the variational problem 

 

   

 

 subject to  

and 
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IMPORTANT NOTE 

 It is important to note that the solution 

is a fuzzy set which is a restriction on 

the values which have can take. The 

fuzzy set may be viewed as the set of 

all values of have which are consistent 

with the given information, p, with the 

understanding that consistency is a 

matter of degree. 

 Note that the solution involves 

reasoning and computation of Type 2.  
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CONCLUDING REMARK 

 For purposes of reasoning and 

computation in RRC, what are needed—in 

addition to possibilistic versions of the 

extension principle—are versions in 

which restrictions are probabilistic, Z+-

restrictions and Z-restrictions. Because of 

restrictions on time, these versions 

together with examples, and quasi-

formalization of Type 3 reasoning, are 

discussed in Part 2 (Appendix).  
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BINARY VERSION OF BASIC EXTENSION 

PRINCIPLE 

 If X=(X1,X2) and X1 and X2 are 

independently restricted, then the 

extension principle reads  
 

   Y=f(X1,X2) 

  R(X1): X1 is A1 

  R(X2): X2 is A2 

R(Y)(f(A1,A2)): µY(v)=supu1,u2
(µA1

(u1)˄µA2
(u2)) 

 

subject to v=f(u1,u2), 

where ˄ is conjunction  
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PROBABILISTIC EXTENSION PRINCIPLE 



, 
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PROBABILISTIC EXTENSION PRINCIPLE 

WITH A POSSIBILISTIC RESTRICTION 

   Y=f(p) 

  R(p): g(p) is A 

 R(Y)(f(A)): µY(q)=suppµA(g(p)) 
 

subject to  

   q=f(p). 
 

p is a probability density function in R.  

A is a fuzzy set in the space of probability 

density functions. 
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Z+-EXTENSION PRINCIPLE 

 In this case, the restriction on X is a Z+-

restriction.    

   Y=f(X) 

  R(X): X iz+ (A,p) 

 R(Y)(f(A,p)): R(Y) iz+ (f(A), f(p)), 

 

where A is a fuzzy set which defines the 

possibility distribution of X, and p is the 

underlying probability density function of 

X. 
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Z-EXTENSION PRINCIPLE 

 In this case, the restriction on X is a Z-number. 
 

   Y=f(X) 

  R(X): X iz (A,B) 

 R(Y)(f(A,B)): Y iz (f(A), C) 
 

where C is the certainty of f(A). Computation of C 

is fairly complex; it involves an application of the 

Z+-extension principle, followed by an application 

of the probabilistic extension principle with a 

probabilistic restriction, p·A is B. As an 

illustration, computation of the sum of two Z-

numbers is described in the Appendix. 

, 
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COMPUTATION WITH Z-NUMBERS 

 Computation with Z-numbers is an 

important area within computation with 

Z-restrictions. Computation with Z-

numbers requires the use of the Z-

version of the extension principle. An 

example which involves computation of 

the sum of two Z-numbers is discussed 

in the following. 
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COMPUTATION OF THE SUM OF Z-NUMBERS 

 Let X=(AX,BX) and Y=(AY,BY). The sum 

of X and Y is a Z-number, Z =(AZ,BZ). 

The sum of (AX,BX) and (AY,BY) is 

defined as: 
 

  (AX,BX) + (AY,BY)= (AX+AY,BZ), 
 

 where AX+AY is the sum of fuzzy 

numbers AX and AY computed through 

the use of fuzzy arithmetic. The main 

problem is computation of BZ. 
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CONTINUED 

 Let pX and pY be the underlying 

probability density functions in the Z-

valuations (X,AX,BX) and (Y,AY,BY), 

respectively. If pX and pY where known, 

the underlying probability density 

function in Z would be the convolution 

of pX and pY, pZ= pX pY, expressed as: 

 

 

 where R is the real line 
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CONTINUED 

 What we know are not pX and pY, but 

restrictions on pX and pY which are 

expressed as: 
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CONTINUED 

 Using the extension principle we can 

compute the restriction on pZ. It reads: 

subject to 
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CONTINUED 


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CONTINUED 



subject to 
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NOTE 

 Computation with Z-numbers is a move 

into a largely unexplored territory. A 

variety of issues remain to be explored. 

One such issue is that of 

informativeness of results of 

computations. A discussion of this 

issue may be found in Zadeh 2011. To 

enhance informativeness and reduce 

complexity of computations, it may be 

expedient to make simplifying 

assumptions about the underlying 

probability distributions.  
LAZ 8/1/2012 92/77 

http://www.cs.berkeley.edu/~zadeh/papers/A Note on Z-numbers--Information Sciences-2011.pdf


LAZ 8/1/2012 93/77 



PREAMBLE 

 In this Section, we briefly address a basic 

question. Can unprecisiated, Type 3 

reasoning be formalized, and if so, how? The 

question is in need of clarification. 

 Historically, a constantly growing number of 

areas within the world of humanities and 

human-centered systems, call it world A, for 

short—areas in which little or no mathematics 

was employed, have metamorphosed into 

mathematically sophisticated theories with 

wide-ranging practical applications.  
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CONTINUED 

 Familiar examples are economics, 

decision analysis and theories of 

natural language. In this 

metamorphosis, unprecisiated 

perceptions were precisiated, opening 

the door to reasoning and computation 

of Type 1 and Type 2. This process is 

not what is meant by formalization of 

Type 3 reasoning. 

LAZ 8/1/2012 95/77 



CONTINUED 

 Employment of reasoning of Type 1 and 

Type 2 in world A has its limitations. 

Little or no success has been achieved 

in dealing with problems in areas such 

as theories of fairness, legal reasoning, 

political debates, human discourse, etc. 

What is widely unrecognized is that in 

realistic settings such areas are 

intrinsically unsuited for formalization 

within the conceptual structure of 

traditional mathematics. 
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CONTINUED 

 What is suggested in the following is 

that it may be necessary to settle for 

what may be called quasi-

formalization—a mode of formalization 

which lies outside the boundaries of 

traditional mathematics. An informative 

example of quasi-formalization is what 

may be called f-geometry. In f-geometry, 

there are no formal concepts, no formal 

definitions and no formal theorems. A 

brief description of f-geometry is 

presented in the following. 
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f-VALID REASONING AND f-GEOMETRY 

 In f-geometry the drawing instrument is a 

spray pen with an adjustable spray pattern. 

Drawing is done by hand.  

 f-geometry is unrelated to Poston’s fuzzy 

geometry (Poston, 1971), coarse geometry 

(Roe, 1996), fuzzy geometry of Rosenfeld 

(Rosenfeld, 1998), fuzzy geometry of Buckley 

and Eslami (Buckley and Eslami, 1997), fuzzy 

geometry of Mayburov (Mayburov, 2008), and 

fuzzy geometry of Tzafestas (Tzafestas et al, 

2006).  
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Informally, in the context of f-geometry, an f-transform of C 

is the result of execution of the instruction: Draw C by hand 

with a spray pen. 

f-TRANSFORMATION 
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C f-C or *C 

Weg Wfg 

f-transformation 

f-TRANSFORMATION AND f-GEOMETRY 

Note that fuzzy figures, as shown, are not hand drawn. 

They should be visualized as hand drawn figures. 

World of Euclidean Geometry World of Fuzzy Geometry 
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f-CONCEPTS IN f-GEOMETRY 

 f-point 

 f-line 

 f-triangle 

 f-parallel 

 f-similar 

 f-circle 

 f-median 

 f-perpendicular 

 f-bisector 

 f-altitude 

 f-concurrence 

 f-tangent 

 f-definition 

 f-theorem 

 f-proof 

 … 
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 The cointension of f-C is a qualitative 

measure of the proximity of f-C to its 

prototype, C. A fuzzy transform, f-C, is 

cointensive if its proximity to C is close. 

Unless stated to the contrary, f-transforms 

are assumed to be cointensive.  

 

 A key idea in f-geometry is the following: if C 

is p-valid (provably valid) then its f-transform, 

f-C, is f-valid (fuzzily valid) with a high validity 

index. As a simple example, consider the 

definition, D, of parallelism in Euclidean 

geometry. 

f-TRANSFORMATION 
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 D:  Two lines are parallel if for any transversal 

that cuts the lines the corresponding angles 

are congruent.  

 

 

 f-transform of this definition reads:  

 f-D: Two f-lines are f-parallel if for any f-

transversal that cuts the lines the 

corresponding f-angles are f-congruent.  

f-TRANSFORMATION OF DEFINITIONS 
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 In Euclidean geometry, two triangles are 

similar if the corresponding angles are 

congruent. Correspondingly, in f-geometry 

two f-triangles are f-similar if the 

corresponding f-angles are f-congruent. 

 

f-TRANSFORMATION OF DEFINITIONS 

A 

B C 

A’ 

B’ C’ 
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Simple example 

 P: if the triangles A, B, C and A’, B’, C’ are 

similar, then the corresponding sides are in 

proportion.  

 

 

f-TRANSFORMATION OF PROPERTIES 

AB 

A’B’ 

BC 

B’C’ 
CA 

C’A’ 
= = 

A 

B C 

A’ 

B’ C’ 
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 *P: if the f-triangles *A, *B, *C and A’, B’, C’ 

are f-similar, then the corresponding sides 

are in f-proportion.  

 

 

f-TRANSFORMATION OF PROPERTIES 

*A*B 

A’B’ 

*B*C 

B’C’ 
*C*A 

C’A’ 
= = 

*A 

*B *C 

A’ 

B’ C’ 
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 An f-theorem in f-geometry is an f-transform 

of a theorem in Euclidean geometry.  

Simple example 

 an elementary theorem, T, in Euclidean 

geometry is:  

 

 T: the medians of a triangle are concurrent. 

 

 A corresponding theorem, f-T, in f-geometry 

is:  

 f-T: the f-medians of an f-triangle are f-

concurrent.  

 

f-TRANSFORMATION OF THEOREMS 
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THE CONCEPT OF f-PROOF 

f-proof 

empirical logical 

A logical f-proof is an f-transform of a proof in 

Euclidean Geometry. 
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A 

B C 

D, E are f-midpoints 

DE is f-parallel to BC 

FH is f-parallel to BC 

AGI is an f-line passing through 

f-point G 

f-triangles EGH and EBC are f-

similar 

f-triangles DFG and DBC are f-

similar 

f-proportionality of corresponding 

sides of f-triangles implies that G is 

f-midpoint of FH 

G is f-midpoint of FH implies that I 

is f-midpoint of BC 

I is f-midpoint of BC implies that the 

f-medians are f-concurrent 

G 

D 

F 

E 

H 

I 

LOGICAL f-PROOF—A SIMPLE EXAMPLE 
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 The f-theorem and its f-proof are f-

transforms of their counterparts in 

Euclidean geometry. But what is 

important to note is that the f-theorem 

and its f-proof could be arrived at 

without any reference to their 

counterparts in Euclidean geometry.  

A KEY OBSERVATION 
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 This suggests an intriguing possibility 

of constructing, in various fields, 

independently arrived at systems of f-

concepts, f-definitions, f-theorems, f-

proofs and, more generally, f-reasoning 

and f-computation. In the conceptual 

world of such systems, p-validity has no 

place. 

A KEY OBSERVATION 
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 In summary, f-geometry may be viewed 

as the result of application of f-

transformation to Euclidean geometry. 

 

 The concept of f-transformation has a 

potential for application in fields other 

than Euclidean geometry. An important 

step in this direction is taken in the 

work of R. Aliev et al, 2011 on decision-

analysis. 

f-GEOMETRY AND BEYOND 
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CONCLUDING REMARK 

 The theory outlined in this lecture, 

RRC, enhances our capability for 

reasoning and computation in an 

environment of uncertainty, 

imprecision and partiality of truth.  

 

 RRC may be viewed as a first step in 

this direction. 
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